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Abstract
Polygenic scores for educational attainment and related variables, such as IQ and 
“mathematical ability” are now readily available via direct-to-consumer genetic test-
ing companies. Some researchers are even proposing the use of genetic tests in edu-
cational settings via “precision education,” in which individualized student educa-
tion plans would be tailored to polygenic scores. The potential psychosocial impacts 
of polygenic scores for traits and outcomes relevant to education, however, have not 
been assessed. In online experiments, we asked participants to imagine hypothetical 
situations in which they or their classmates had recently received polygenic scores 
for educational attainment. Participants prompted to answer multi-choice questions 
as though they had received their own low-percentile score, compared to a control 
condition, scored significantly lower on measures of self-esteem and of self-per-
ceived competence, academic efficacy, and educational potential. Similarly, those 
asked to evaluate a hypothetical classmate as though the classmate had received a 
low-percentile score attributed significantly lower academic efficacy and educational 
potential, compared to a control condition. Through possible mechanisms of stigma 
and self-fulfilling prophecies, our results highlight the potential psychosocial harms 
of exposure to low-percentile polygenic scores for educational attainment.
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1 Introduction

Genome-wide association studies (GWAS) have given rise to a new era of 
genomic prediction. By summing the miniscule effects of thousands of genetic 
associations identified by GWAS, polygenic scores (PGS) permit modest predic-
tion of a wide range of human traits, from height and weight to cardiovascular 
disease and melanoma (Chan et  al. 2011; Cust et  al. 2018; Khera et  al. 2019; 
Paquette et  al. 2017). Although most applications of GWAS and polygenic pre-
diction are relatively non-controversial, recent efforts to elucidate the genetic 
bases of socially mediated, non-medical outcomes have generated some conten-
tion. Notably, GWAS have been employed by social scientists to identify genetic 
variants and develop PGS associated with educational attainment (EA), intelli-
gence, mathematics ability, reading ability, social-class mobility, sexual behavior, 
and household income (Belsky et al. 2018; Chen et al. 2017; Ganna et al. 2019; 
Paige Harden et al. 2019; Hill et al. 2019; Lee et al. 2018; Luciano et al. 2013; 
Savage et al. 2017).

Moreover, PGS for these socially mediated outcomes are being used to develop 
direct-to-consumer (DTC) genetic tests aimed at predicting what might be perceived 
as an individual’s genetic potential for intelligence, education, or wealth (Folkersen 
et al. 2020; Stéphane 2018). In line with a longstanding interest in the use of genetic 
information in educational settings (Gason et  al. 2005; Grigorenko 2007; Roth-
stein 1998), some scientists have gone so far as to recommend the development of 
“genetically sensitive” schools that would involve the use of PGS in educational set-
tings (Asbury and Plomin 2014; Erbeli 2019; Hart 2016; Haworth and Plomin 2012; 
Morris et al. 2019; Plomin and von Stumm 2018; Plomin and Walker 2003; Plomin 
et al. 2007). The idea has also received attention in popular media, with advocates 
for and against debating its merits (Briley and Tucker-Drob 2019; Harden 2018a, b; 
Martschenko 2019; Regalado 2018; Williamson 2018).

Analogous to “precision medicine”—which involves tailoring patients’ medi-
cal care to their genetic profiles—“precision education” would involve tailoring 
students’ educational curricula to their polygenic scores for traits and outcomes 
relevant to schooling, such as EA, IQ, or mathematical ability. Asbury and Plo-
min (2014) suggest that human behavior genetics demonstrates that not all stu-
dents are equal in genetic potential, and that genetic tests could be used to iden-
tify students at risk to struggle in school:

Genetics tells us that some children will, by their very nature, find the acqui-
sition of [literacy, numeracy, and technological skills] difficult and that they 
should be provided with personalized support to whatever extent is neces-
sary to enable them to acquire an adequate toolkit of skills (p. 11).

Further, although the predictive accuracy of PGS is currently very limited, pro-
ponents of precision education suggest that individual prediction is just around 
the corner, as technology will soon be available to “to use DNA ‘chips’ to predict 
strengths and weaknesses for individual pupils and to use this information to put 
personalized strategies in place for them” (Asbury and Plomin 2014, p. 14).



1 3

Pygmalion in the genes? On the potentially negative impacts…

Although proponents maintain that precision education would be beneficial to 
individuals and society in the long term, others are concerned that genetic informa-
tion could have undesirable consequences in educational settings (Martschenko et al. 
2019; Sabatello 2018). Some scholars warn that genetic information is interpreted 
through the lens of “genetic essentialist” biases, i.e., the belief that genetic causes 
are fixed, immutable, and deterministic (Dar-Nimrod and Heine 2011; Keller 2005), 
and that these biases may promote stigma against persons with genetic propensities 
for socially disfavored traits, such as schizophrenia (Sabatello and Juengst 2019).

No studies have investigated effects of genetic information in educational set-
tings. Nonetheless, a good deal of the prior research on the psychosocial impacts 
of genetic information regarding disease-related traits is consistent with essentialist 
interpretations and stigma. In some cases, such information appears to affect beliefs 
about the controllability of behaviors believed to be influenced by genes or biology. 
For example, persons led to believe they have a gene for alcoholism report feeling 
reduced control of their drinking behavior (Dar-Nimrod et al. 2013); genetic attribu-
tions for obesity are associated with perceptions of reduced control over eating and 
weight gain (Dar-Nimrod et  al. 2014); and people led to believe they are geneti-
cally predisposed to depression have reduced confidence in their ability to cope with 
depressive symptoms (Lebowitz and Ahn 2018).

Similarly, essentialist biases may influence how persons view the severity or 
durability of traits believed to be caused by genes or biology. For example, the 
more people attribute their own depressive symptoms to genetic (and other biologi-
cal) causes, the longer they expect those symptoms to last (Lebowitz et al. 2013), 
and when people are told that they are genetically predisposed to depression, they 
recall having experienced more depressive symptoms in the recent past (Lebow-
itz and Ahn 2017). In some cases, the impact of genetic information may extend 
beyond mere self-perceptions to actual performance: in one study, older adults who 
were informed that they carried an APOE-ε4 allele associated with increased risk 
of Alzheimer’s disease performed worse on memory tasks than APOE-ε4 carriers 
who were not informed (Lineweaver et al. 2014); in another, participants genotyped 
and informed of a high risk genetic test result for cardiorespiratory exercise capacity 
reached a lower maximum capacity for  C02:02 gas exchange and decreased ventila-
tory flow rate compared to those informed of a protected genetic test result (Turn-
wald et al. 2019).

Consistent with concerns regarding stigma, some prior research suggests that 
genetic or biological information may negatively influence attitudes and beliefs 
toward others. In a study of medical students, participants presented with genetic 
information regarding obesity were less likely to recommend weight loss and exer-
cise to virtual patients (Persky and Eccleston 2011). Another study showed that 
biological explanations appear to reduce mental health clinicians’ empathy for their 
patients (Lebowitz and Ahn 2014).

If similar negative impacts were to be borne out for genetic tests for education 
as they have for obesity, depression, alcoholism, and Alzheimer’s disease, then 
EA-PGS may hinder educational achievement, rather than help it. Learning one’s 
own EA-PGS result, for example, could give rise to negative self-fulfilling prophe-
cies. Just as learning about a genetic predisposition to depression may lead people 
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to perceive themselves as more depressed or less able to overcome depression, stu-
dents who learn that their genes predict low educational attainment may view them-
selves as unlikely to succeed in school, which may interfere with their motivation to 
study for tests or pursue higher education. Likewise, just as learning that one car-
ries a genetic risk factor for Alzheimer’s disease can negatively impact performance 
on memory tests, a low EA-PGS result may negatively impact actual scholastic 
performance.

Similarly, EA-PGS could hinder educational achievement through the stigmatiz-
ing attitudes of others, such as parents, classmates, or teachers. In the event that 
genetic test results were disclosed in educational settings—perhaps via a geneti-
cally sensitive, individualized education plan provided to a parent, educator, or 
administrator—some students with low EA-PGS results may live down to others’ 
perceptions of limited genetic potential, a negative version of the Pygmalion effect 
(Rosenthal and Jacobson 1968). Parents and educators may have less confidence in 
students with a low EA-PGS, and be less likely to encourage studying for school, 
or discourage pursuit of college or graduate school. In the event that students were 
to reveal genetic test results to classmates, or perhaps infer test results given course 
placement, students believed to have low EA-PGS may be stigmatized by their peers 
and classmates, harming confidence and self-esteem.

Given the increasing popularity of DTC genetic tests for education-related traits 
and outcomes (Allyse et  al. 2018; Regalado 2019; Su 2013), recent calls for pre-
cision education, and a growing body of research on the negative psychosocial 
impacts of genetic information, we sought to assess psychosocial impacts of EA-
PGS. We conducted two experiments in which individuals recruited using Amazon’s 
Mechanical Turk (MTurk) platform were prompted to answer multiple-choice ques-
tions gauging attitudes and beliefs about self-esteem and beliefs related to school 
performance, as though they had received a hypothetical EA-PGS result. Experi-
ment 1 examined the potential for EA-PGS to impact self-perceptions relevant to 
schooling, while Experiment 2 investigated the potential for EA-PGS to impact 
attitudes towards others. For both experiments, we hypothesized that low EA-PGS 
would negatively impact self-esteem and perceptions of competence, growth mind-
set, academic efficacy, and educational potential.

2  Experiment 1: considering one’s own EA‑PGS

2.1  Methods

2.1.1  Participants

Power analyses revealed that a total sample size of 432 participants would be nec-
essary to detect modest effects (f = 0.15) in a three-group one-way ANOVA with 
80% power at an alpha cut-off of p < 0.05. After receiving approval from the Insti-
tutional Review Board of the New York State Psychiatric Institute, we recruited 
U.S. adults via MTurk (N = 477; 45% male; 53% female; 1% other), ranging in 
age from 18 to 25 years (M = 24.3, SD = 2.68) to roughly align with the age range 
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of U.S. college student populations. Seventy-five percent of participants identi-
fied as white; 45.5% indicated having a bachelor’s degree; and 23.4% indicated 
a household income between $20,000 to $39,999 (See Table  1: Experiment 1 
Demographic Characteristics). Listing a $1 incentive, a link to our survey enti-
tled “Survey about Education” was made available to registered MTurk “workers” 
who met these criteria.

Table 1  Study 1 demographic characteristics (n = 477)

Demographic variables N %

Age
Mean age = 24.33 (SD = 2.68)
Gender
Female 249 53.4
Male 211 45.3
Race
Black or African American 45 9.7%
White 349 74.9%
American Indian or Alaska Native 5 1.1%
Asian 49 10.5%
Native Hawaiian or Pacific Islander 4 .9%
Other 14 3.00%
Ethnicity
Latino or hispanic 56 12.0%
Not latino or hispanic 410 88.0%
Education
Less than high school (less than 9th grade) 1 .2%
Some high school (9th to 12th grade), no diploma 1 .2%
High school graduate (diploma or GED equivalent) 70 15.0%
Some post-high school training (college or occupational, technical, or vocational 

training), no degree or certificate
122 26.2%

Associate (2-year) college degree, or completed occupational, technical, or voca-
tional program and received degree or certificate

67 14.4%

Bachelors degree (for example: BA, AB, BS) 178 38.2%
Graduate or professional degree (for example: MA, MBA, JD, MD, PHD) 27 5.8%
Household income
Less than $20,000 63 13.5%
$20,000–$39,999 109 23.4%
$40,000–$59,999 97 20.8%
$60,000–$79,999 80 17.2%
$80,000–$99,999 37 7.9%
$100,000–$139,999 45 9.7%
$140,000 or more 35 7.5%
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2.1.2  Procedures

Using the Qualtrics automatic randomizer, participants were randomized to one of 
three conditions: in the low EA-PGS condition (n = 161), participants were asked to 
imagine they had received a low-percentile polygenic score for educational attain-
ment; in the high EA-PGS condition (n = 152), participants were prompted to imag-
ine they had received a high-percentile score; and in the control condition (n = 153), 
participants received no vignette regarding EA-PGS. See Table 2 for the contents of 
the vignettes presented to participants in the low EA-PGS and high EA-PGS condi-
tions. After reading the vignette, participants were prompted to complete a compre-
hension check, comprising a single, true-or-false question about whether a person 
with a low EA-PGS is likely to accrue more education than a person with a high 
EA-PGS.

Table 2  Stimuli used in experiments 1 and 2

Experiment 1 participants were prompted to imagine having received an EA-PGS result of their own, 
while experiment 2 participants were prompted to imagine a hypothetical classmate with an EA-PGS 
score

Experiment 1 text: considering one’s own EA-PGS “Recently, scientists have developed a new genetic 
test called a ’polygenic score’ that works by 
analyzing the DNA in a person’s blood or saliva. 
A polygenic score can be used to estimate how 
many years of school a person might complete. 
A person with a high polygenic score is likely to 
complete more years of school in their life than 
a person with a low polygenic score. Let’s say 
you were in college and that you agreed to do a 
DNA test, which showed that you have a [high/
low] polygenic score for education. How would 
you answer the following questions if your DNA 
test suggested that you were likely to complete 
[more/fewer] years of education than an average 
person?”

Experiment 2 text: considering a classmate’s EA-
PGS

“Recently, scientists have developed a new genetic 
test called a ’polygenic score’ that works by 
analyzing the DNA in a person’s blood or saliva. 
A polygenic score can be used to estimate how 
many years of school a person might complete. 
A person with a high polygenic score is likely to 
complete more years of school in their life than a 
person with a low polygenic score. Let’s say you 
are enrolled in college and you have a classmate 
named Jane. Jane comes from a middle-class 
family and lives with her mom and dad. Jane 
recently had a DNA test, which showed she has 
a [high/low] polygenic score for education. How 
would you answer the following questions if 
Jane’s DNA test suggested that she was likely to 
complete [more/fewer] years of education than 
an average person?”
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All participants then were prompted to answer a set of multiple-choice ques-
tions comprising five scales designed to measure self-stigmatizing attitudes and 
feelings about education and schooling (See Table  3). First, participants were 
given the 10-item Rosenberg Self-Esteem Scale (RS-ES) (Rosenberg 1965). By 
measuring positive and negative feelings about the self, the RS-ES is designed to 
provide a global measure of self-worth. Second, participants were given a three-
item, Growth-Mindset Scale (G-MS) (Dweck 1999, 2006). Measuring general 
attitudes about the malleability of intelligence, the G-MS is designed to assess 
beliefs about whether intelligence can be improved through hard work. Third, 
participants were given an eight-item Competence Scale (CS) (Fiske et al. 2007; 
Lebowitz et al. 2015). Including items assessing perceptions of intelligence, skill, 
education, and confidence, the CS is a measure designed to capture a person’s 
ability to act on their intentions.

Fourth, participants were given the Academic Efficacy Scale (AES), which is a 
five-item subscale of the Patterns of Adaptive Learning Scales (PALS). The AES 
is designed to measure attitudes and beliefs about academic performance and 
potential (Midgley et al. 2000), and includes items asking whether the respond-
ent can do well in school through hard work and effort. Finally, all participants 
were given an Educational Potential Scale (EPS), which is a novel, six-item scale 
that we designed and developed to assess respondents’ attitudes and beliefs about 
past, present, and future school performance and potential. The EPS, which has 
sufficient inter-item reliability (α > 0.80) and is available upon request, prompts 
participants to rate (on a seven-point Likert type scale) statements such as, “Addi-
tional study hours would improve my grades” and “There’s no point for me to get 
a tutor.” All items were scored such that higher scores corresponded to greater 
optimism about one’s educational potential and were averaged to compute an 
overall EPS score for each participant. The order in which participants were pre-
sented each scale, and the sequence of items in each scale, were also randomized.

After completing all measures, participants viewed a debriefing, which offered 
a brief explanation of the currently limited predictive capacities of EA-PGS. 
The debriefing material also included a blank text box, in which participants 
were prompted to indicate whether the survey made them feel uncomfortable or 
stressed.

Table 3  Inter-item reliability of outcome measures (Cronbach’s alpha)

Scale Group 1: α = Group 2: α = 

Rosenberg Self-Esteem Scale (RS-ES) .946 .925
Competence Scale (CS) .943 .936
Growth-Mindset Scale (G-MS) .949 .922
Academic Efficacy Scale (AES) .946 .939
Educational Potential Scale (EPS) .801 .723
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2.1.3  Data analysis

Statistical analyses were performed using SPSS. We first calculated inter-item 
reliability by estimating Cronbach’s alpha for each scale (Table 2). We then con-
ducted one-way ANOVAs to assess significant main effects of condition (low EA-
PGS, high EA-PGS, or control) on dependent variables (CS, RS-ES, AES, G-MS, 
and the EPS). Finally, for variables that showed a significant omnibus main effect 
of condition, we examined pairwise comparisons between the control condition 
and each of the other conditions using Dunnett’s t tests.

2.1.4  Results

Participants asked to imagine having received a low-percentile EA-PGS score of 
their own reported significantly reduced self-esteem, competence, academic effi-
cacy, and educational potential. The one-way ANOVAs revealed significant main 
effects of condition on RS-ES scores, F(2, 464) = 13.57, p < 0.001; CS scores, 
F(2,466) = 25.62(2), p < 0.001; AES scores, F(2,465) = 25.67, p < 0.001; and 
EPS scores, F(2,465) = 9.78, p < 0.001; but not on G-MS scores, F(2,466) = 0.17, 
p = 0.84. Follow-up pairwise comparisons using Dunnett t tests revealed that, in 
comparison with the control condition, participants in the low EA-PGS condition 
reported lower self-esteem (p = 0.003, d = 0.35), self-perceptions of competence 
(p < 0.001, d = 0.59), academic efficacy (p < 0.001, d = 0.62), and educational 
potential (p = 0.003, d = 0.34) (Fig. 1). There were no significant pairwise differ-
ences between the high EA-PGS and control conditions.

1

2

3

4

5

6

7

EPS CS G-MS RS-ES AES

Low EA-PGS Control High EA-PGS

Fig. 1  Mean scores on educational potential scale (EPS), competence scale (CS), growth-mindset scale 
(G-MS), self-esteem scale (RS-ES), and academic efficacy scale (AES) for participants asked to imagine 
having received their own EA-PGS, by condition, in Experiment 1. Error bars represent ± 1 SE
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3  Experiment 2: considering a classmate’s EA‑PGS

3.1  Methods

3.1.1  Participants

A second group of U.S. adults ages (N = 439; 35.54% male; 63.33% female; 1.14% 
‘other’) 18–25 years (M = 24.43, SD = 2.56) was recruited to take a “Survey about 
Education” via MTurk, using the same approach as in Experiment 1. 74.1% of 
participants identified as white; 45.5% indicated having a bachelor’s degree; and 
24.2% indicated a household income between $20,000 to $39,999 (See Table 4: 
Experiment 2 Demographic Characteristics).

3.1.2  Procedures

All participants were prompted to read a vignette about a hypothetical classmate 
who had recently received the results of a genetic test for education (Table 1). As 
in experiment 1, participants were randomized to one of three conditions: control 
(n = 145), low EA-PGS (n = 144), and high EA-PGS (n = 152). Scales identical 
or similar to those in experiment 1 were used to assess impacts of EA-PGS on 
growth mindset (G-MS), and perceptions of the classmate’s educational poten-
tial (EPS), competence (CS), self-esteem (RS-ES), and academic efficacy (AES). 
Items on the RSES, EPS, and AES were reworded to reflect attitudes towards oth-
ers, rather than oneself. On the RSES, for example, the item “All in all, I am 
inclined to feel that I am a failure” was altered to assess participant attitudes 
toward a hypothetical classmate (“Jane”) described in the vignette: “All in all, I 
am inclined to feel that my classmate Jane is a failure.” These revised versions of 
the RSES, EPS, AES showed satisfactory inter-item reliability (alpha > 0.7) and 
are available upon request. All other procedures, including the comprehension 
check and debriefing, were identical to those in Experiment 1.

3.1.3  Data analysis

Statistical analyses were performed using SPSS. We first calculated inter-item 
reliability by estimating Cronbach’s alpha for each scale (Table 2). We then con-
ducted one-way ANOVAs to assess significant main effects of condition (low EA-
PGS, high EA-PGS, or control) on dependent variables (CS, RS-ES, AES, G-MS, 
and the EPS). Finally, for variables that showed a significant omnibus main effect 
of condition, we examined pairwise comparisons between the control condition 
and each of the other conditions using Dunnett t tests.
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3.1.4  Results

Participants attributed reduced academic efficacy and educational potential 
to hypothetical classmates who had received low-percentile EA-PGS scores. 
The one-way ANOVAs revealed significant main effects of condition for AES 
scores, F(2,439) = 12.52, p < 0.001; CS scores, F(2,439) = 9.19, p < 0.001; and 
EPS scores, F(2,438) = 7.2, p = 0.001; but not for G-MS scores, F (2,440) = 1.66, 
p = 0.192; or RS-ES scores, F(2,439) = 0.59, p = 0.555. Follow-up pairwise 

Table 4  Experiment 2 demographic characteristics (n = 477)

Demographic variables N %

Age
Mean age = 24.43 (SD = 2.56)
Gender
Female 278 63.3%
Male 156 35.5%
Race
Black or African American 44 10.0%
White 326 74.1%
American Indian or Alaska Native 5 1.1%
Asian 38 8.6%
Native Hawaiian or Pacific Islander 1 .2%
Other 26 5.9%
Ethnicity
Latino or Hispanic 70 16.0%
Not Latino or Hispanic 368 84.0%
Education
Less than high school (less than 9th grade) 0 0%
Some high school (9th to 12th grade), no diploma 2 .5%
High school graduate (diploma or GED equivalent) 39 8.9%
Some post-high school training (college or occupational, technical, or vocational 

training), no degree or certificate
101 23.0%

Associate (2-year) college degree, or completed occupational, technical, or voca-
tional program and received degree or certificate

47 10.7%

Bachelors degree (for example: BA, AB, BS) 200 45.4%
Graduate or professional degree (for example: MA, MBA, JD, MD, PHD) 51 11.6%
Household income
Less than $20,000 54 12.3%
$20,000–to $39,999 106 24.2%
$40,000–$59,999 75 17.1%
$60,000–$79,999 77 17.5%
$80,000–$99,999 56 12.8%
$100,000–$139,999 37 8.4%
$140,000 or more 34 7.7%
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comparisons using Dunnett t tests revealed that, in comparison with the control 
condition, participants in the low EA-PGS condition ascribed lower academic 
efficacy (p < 0.001, d = 0.40) and educational potential (p = 0.002, d = 0.38) to the 
hypothetical classmate; while participants in the high EA-PGS ascribed greater 
competence (p = 0.014, d = 0.30) (Fig. 2).

4  Discussion

The present research revealed a number of potential negative psychosocial impacts 
of exposure to one’s own or others’ low-percentile EA-PGS results. In Experi-
ment 1, participants prompted to answer multiple-choice questions as though they 
had received a low EA-PGS scored lower on measures of self-esteem, as well as 
self-perceived competence, academic efficacy, and educational potential, compared 
to those who received no information regarding EA-PGS (i.e., control condition). 
In Experiment 2, participants attributed significantly lower academic efficacy and 
educational potential to a hypothetical classmate with a low EA-PGS, compared to 
one who had received no EA-PGS. Our results suggest that exposure to one’s own 
or another’s low EA-PGS could negatively impact attitudes and beliefs directly rel-
evant to success in school.

In addition to a general negative effect of the low EA-PGS condition, Experiment 
1 showed that there was no difference between control and high EA-PGS, which 
could suggest most participants assume their own polygenic scores are above aver-
age. This condition of perceived superiority is consistent with previous research 
on the relationship between self-assessment and actual performance, such as the 
above-average effect, the Downing effect, and the Dunning-Kruger effect (David-
son and Downing 2000; Furnham et al. 2005; Kruger and Dunning 1999; Schmidt 
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EPS CS G-MS RS-ES AES

Low EA-PGS Control High EA-PGS

Fig. 2  Mean scores on educational potential scale (EPS), competence scale (CS), growth-mindset scale 
(G-MS), self-esteem scale (RS-ES), and academic efficacy scale (AES) for participants asked to imagine 
having received their own EA-PGS, by condition, in Experiment 2. Error bars represent ± 1 SE
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et al. 1999). The result is also consistent with the notion that negative information 
is more impactful than positive information (Baumeister et al. 2001). Similarly, in 
experiment 2, the high EA-PGS scenarios generally did not produce significant dif-
ferences from the control condition. However, in one exception, participants attrib-
uted significantly higher competence (i.e., CS) to a hypothetical classmate with high 
EA-PGS than the control. The explanation for this one exception is unclear; future 
research could examine whether there may be some dimensions on which high EA-
PGS scores cause people to be perceived as superior.

One possible implication of our findings is that individual EA-PGS results should 
be used or interpreted with caution, especially in educational settings. Given that 
EA is highly correlated with, and treated as a proxy for, IQ (Deary et  al. 2007), 
genetic tests generating polygenic scores aimed at predicting intelligence or related 
outcomes, such as math and reading ability, should also be approached with caution. 
Whether through exposure to results via precision education or DTC genetic test-
ing, learning of one’s own or another’s low score may result in harmful beliefs and 
attitudes about academic capability and educational potential. Our findings suggest 
that genetic tests may give rise to a negative Pygmalion effect (i.e., negative self-ful-
filling prophecies) in educational settings. Students who receive low EA-PGS may 
have reduced confidence in their ability to succeed in school and may be exposed to 
harmful stigmatizing attitudes from parents, classmates, or educators. These impacts 
could conceivably lead them to be less likely than others to study for tests and pur-
sue college or graduate school, or to stay in school.

Our findings may be especially worrisome considering the limited ability of PGS 
to predict individual outcomes, especially in individuals of non-European back-
grounds (von Stumm et  al. 2020). Although persons who receive test results may 
respond to them as if they were true predictors, the actual predictive capacities of 
PGS for highly complex behavioral traits and outcomes—including EA and IQ—
are subject to a host of conceptual and methodological caveats (Berg et  al. 2019; 
Bulik-Sullivan et al. 2015; Coop, 2019; Dai et al. 2019; Duncan et al. 2019; Jans-
sens, 2019; Krapohl et  al. 2014; Martin et  al. 2017, 2019; Mostafavi et  al. 2019; 
Rosenberg et al. 2019).

First, DNA variants discovered in large-scale GWAS for EA explain proportions 
of variance too small to be usefully predictive of individual outcomes. Genetic dif-
ferences between participants explained only approximately 14% of the total vari-
ance in EA in a GWAS of over one million participants (Lee et al. 2018), and only 
4% of the total variance in IQ in a GWAS of 280,000 participants (Savage et  al. 
2017). These results are characteristic of genomic studies of highly complex traits 
and outcomes known to be mediated by social and environmental factors. With such 
limited predictive capacity at the population level, individual-level PGS predictions 
of EA, IQ, and similarly complex traits related to education are highly likely to misi-
dentify individual outcomes. That is, children who go on to lead highly successful 
lives and accrue many years of education may have low-percentile EA-PGS scores, 
while conversely, children who will ultimately drop out of high school may have 
high-percentile scores. If a student with truly high educational potential, however, 
were to receive a low EA-PGS score, our two experiments point to the possibility 
that such a score could negatively impact the student’s educational trajectory via 
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negative self-perceptions and stigmatizing attitudes among others made aware of the 
student’s EA-PGS result.

Second, PGS for EA and IQ are more likely to misidentify the outcomes of peo-
ple of non-European ancestry. PGS are subject to a “problem of portability”; that is, 
they are less predictive in populations with characteristics different from the popula-
tion characteristics of the original GWAS sample. Specifically, PGS exhibit variable 
predictive accuracy within samples of differing sex, age, and socioeconomic status, 
and between populations of different genetic ancestry (Martin et al. 2019; Mostafavi 
et al. 2019). Notably, PGS for height derived from populations of European ancestry 
inaccurately predicted Africans to be shorter than Europeans and slightly taller than 
East Asians (Martin et al. 2017). Given that greater than 70% of GWAS participants 
are of European descent (Need and Goldstein 2009; Popejoy and Fullerton 2016; N. 
A. Rosenberg et  al. 2010), the implications of this problem of portability are that 
PGS for EA and IQ are more likely to misidentify the outcomes of individuals of 
non-European ancestry who were historically and are currently disadvantaged in 
American classrooms.

4.1  Study limitations

There are four primary limitations of our study. First, our study is strictly hypotheti-
cal in design, which limits the capacity of our findings to extrapolate to real-world 
cases of exposure to EA-PGS results. We did not assess the psychosocial impacts 
of real EA-PGS results, nor did we use a nationally representative sample of US 
students. Rather, our studies asked predominantly White MTurk workers to com-
plete a survey as though they had been exposed to an EA-PGS result. Although our 
experimental design cannot rule out the possibility, we believe it is unlikely that real 
genetic tests would be less impactful than hypothetical genetic tests.

Rather, it seems likely that individuals would be more strongly affected by the 
results of an actual genetic test than by those entertained by imagination. Moreover, 
our results mirror the empirical results of previous studies on the attitudes of indi-
viduals who were led to believe that they had taken real genetic tests. For example, 
participants given a sham genetic test for susceptibility to depression (Lebowitz and 
Ahn 2018), who were then told that they had tested positive for a genetic predispo-
sition for major depression, showed diminished confidence in their ability to cope 
with symptoms of depression.

Similarly, the results of our study of MTurk workers may not be generalizable to 
individuals most likely to be impacted by EA-PGS results. Actual students or par-
ents of students might be more or less likely to be impacted by genetic tests that are 
believed to predict their educational potential. For example, the results of an EA-
PGS may impact a high school student’s decision to pursue college or a college stu-
dent’s decision to pursue graduate school. Or such results may have much less effect 
on students’ choices than their educational performance to date. Therefore, further 
investigation into the impacts of EA-PGS is required to assess their influence in real-
life educational settings.
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Second, our study relies on self-reports of competency, rather than actual assess-
ments of performance. It could be, for example, that although individuals who are 
asked to imagine a hypothetical low EA-PGS report lower self-perceptions of com-
petence in educational settings, an actual assessment of performance in educational 
settings would reveal no effect. Although this outcome cannot be ruled out by our 
experimental design, our results are consistent with some prior research in which 
exposure to genetic information is significantly correlated with reduced performance 
on actual tasks. In the study of Alzheimer’s patients cited above, for example, geno-
type-by-disclosure interaction effects were demonstrated in which older adults who 
knew their ApoE4 genotype performed worse on verbal memory tests than older 
adults who also carried ApoE4 but did not know their genotype (Lineweaver et al. 
2014). However, further investigation is needed to assess whether actual EA-PGS 
results influence real-life performance on tasks related to educational assessment.

Third, our findings are limited in that they do not speak to the potential psycho-
social impacts of alternative kinds of non-genetic diagnostic testing. That is, our 
findings are informative about the potential psychosocial impacts of exposure to 
low-percentile polygenic scores for educational attainment, but do not address the 
impacts of receiving other kinds of information (e.g., aptitude tests) relating to edu-
cational attainment. Further studies that compare the impacts of low-percentile EA-
PGS to alternative educational diagnostics are required to address this limitation.

Fourth, participant comprehension of genetics may have influenced our results. 
That is, our studies did not seek to measure participants’ genetic literacy, which 
could potentially moderate negative psychosocial impacts. It may be, for example, 
that individuals with above-average comprehension of genetics are more likely to be 
aware of the limitations of EA-PGS and thus less likely to be negatively impacted 
by them. To address this limitation, we are currently conducting studies that seek to 
identify factors that influence the impacts of EA-PGS, such as information regarding 
the predictive and explanatory limitations of individual polygenic scores.

4.2  Educational impacts and implications

Despite the predictive limitations of EA-PGS, there are numerous avenues by which 
individuals may be in a position to interpret either their own or another person’s EA-
PGS. First, individuals may acquire EA-PGS via direct-to-consumer (DTC) genetic 
reporting companies, such as GenePlaza, Genomelink, Xcode, and Promethease 
(Stéphane 2018). These companies allow users to upload their genomic data, which 
may be obtained from services such as 23andme, Ancestry.com, FamilyTreeDNA, 
and Genos, and purchase individual genetic reports for anything from “educational 
attainment” and “mathematical ability” to “depression” and “addictions.” The 
upshot is that DTC genetic testing opens the door for individuals to obtain, use, 
and interpret highly inaccurate and misleading genetic tests for traits and outcomes, 
which may negatively impact attitudes and beliefs about education and schooling.

Until more is understood about the complex relationships between genetics, envi-
ronments, and educational outcomes, and EA-PGS can be used to reliably and accu-
rately predict outcomes at the level of individuals—which may not be an attainable 
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goal, for the reasons noted above—we encourage extreme caution. Ideally, individu-
als seeking to interpret the results of genetic tests for traits and outcomes relevant 
to education ought to receive accessible information that helps explain what the 
tests mean and emphasizes predictive and explanatory limitations. Such information 
ought to explain, for example, that genetic tests for education and related outcomes 
are moderately predictive of group outcomes (on average, individuals with high EA-
PGS are likely to accrue more years of schooling than individuals with low EA-
PGS), but cannot usefully predict individual life trajectories.

Individuals, parents, educators, administrators, and educational policy-makers 
seeking to make decisions about the use and interpretation of education-related PGS 
ought to familiarize themselves with information regarding the nature and limita-
tions of the underlying genetic studies, such as FAQs frequently published with 
genetic studies for non-medical traits. These FAQs, which often explain in clear lan-
guage what genomic studies do and do not reveal, attempt to counter common mis-
conceptions and misinterpretations of results by highlighting limitations of the sci-
ence. For example, in a brief FAQ regarding genetic associations with mathematical 
achievement, researchers emphasized that PGS are “NOT ‘fortune-tellers’” or free 
of influence from environmental or social processes (Harden 2020).

Parents and educators may also refer students to a growing number of online 
resources, including videos, designed to provide accessible explanations of genetic 
studies of educational outcomes. For example, in an animated YouTube video co-
scripted by a behavior geneticist, a narrator offers a public-facing account of poly-
genic scores and their relation to educational attainment, and warns of their potential 
for misunderstanding (Genes, Education, and Equity 2020). Such resources may be 
useful for helping individuals understand the results of EA-PGS. In sum, the poten-
tial psychosocial harms highlighted by this study, combined with the severely lim-
ited predictive and explanatory potential of PGS relevant to education, warrants 
extreme caution about application of EA-PGS, especially in educational settings.
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